设ln(x^2+y^2)^(1/2)=arctan(y/x),则y的导数为

问题描述:

设ln(x^2+y^2)^(1/2)=arctan(y/x),则y的导数为

两边同时对x求导,隐函数求导:
1/(x^2+y^2)^(1/2)*1/2(x^2+y^2)^(-1/2)*(2x+2y*y')=1/(1+(y/x)^2)*(y'*x-y)/x^2
化简:
y'=(x+y)/(x-y)

ln(x^2+y^2)^1/2=arctan(y/x)
1/2ln(x^2+y^2)=arctan(y/x)
ln(x^2+y^2)=2arctan(y/x) 两边求导得
1/(x^2+y^2)*(2x+2yy')=2*1/(1+y^2/x^2)*(y'x-y)/x^2
(2x+2yy')/(x^2+y^2)=2x^2(y'x-y)/[(x^2+y^2)x^2]
2x+2yy'=2y'x-2y
2y'x-2yy'=2x+2y
y'=(x+y)/(x-y)
你是不是非要把我累死啊