求lim┬(x→4)〖(3-√(5+x))/(1-√(5-x))〗
问题描述:
求lim┬(x→4)〖(3-√(5+x))/(1-√(5-x))〗
答
-1/3
答
对于lim┬(x→4)〖(3-√(5+x))/(1-√(5-x))〗 分子分母均同乘以〖(3+√(5+x))(1+√(5-x))〗 得到lim┬(x→4)〖(3-√(5+x))/(1-√(5-x))〗= lim┬(x→4)〖-(1+√(5-x))/(3+√(5+x))〗= -2/6=-1/3(其中约去了x-4和4-x...