一艘轮船所带的柴油最多可以用6小时.驶出时顺风,每小时行驶30千米.驶回时逆风,每小时行驶的路程是顺风时的45.这艘轮船最多驶出多远就应往回驶了?

问题描述:

一艘轮船所带的柴油最多可以用6小时.驶出时顺风,每小时行驶30千米.驶回时逆风,每小时行驶的路程是顺风时的

4
5
.这艘轮船最多驶出多远就应往回驶了?

设驶出时用了x小时,则回来时用了6-x小时,可得方程:
30x=30×

4
5
×(6-x)
30x=24×(6-x),
30x=144-24x,
54x=144,
  x=
8
3

30×
8
3
=80(千米).
答:这艘轮船最多驶出80千米就应往回驶.
答案解析:要想求这艘轮船最多驶出多远,则其回到港口时,油应正好用完,即正好行驶了6小时,由于其来回的路程是一样的,由此可设驶出时用了x小时,行驶了30x千米,则回来时用了6-x小时,行驶了30×
4
5
×(6-x)千米,可得方程:30x=30×
4
5
×(6-x),解此方程求得时间后,即能求得这艘轮船最多驶出多远就应往回驶.
考试点:流水行船问题.
知识点:在明确其来回的路程是一样的基础上,通过设未知数根据速度×时间=路程列出等量关系式是完成本题的关键.