通项公式为an=an^2+n的数列,若满足a1<a2<a3<a4<a5,且an>a(n+1)对n≥8恒成立,则实数a的取值范围是
问题描述:
通项公式为an=an^2+n的数列,若满足a1<a2<a3<a4<a5,且an>a(n+1)对n≥8恒成立,则实数a的取值范围是
答
an-a(n+1)=[an^2+n]-[a(n+1)^2+n+1]
=-a(2n+1)-1>0(n>=8),
∴a(2n+1)-1/9.
综上,-1/9