有甲乙丙三种货物,若购甲3件,乙7件,丙1件,则共需320元;若购甲4件,乙10件,丙1件,则共430元.那么甲乙丙各买一需要多少元?
问题描述:
有甲乙丙三种货物,若购甲3件,乙7件,丙1件,则共需320元;若购甲4件,乙10件,丙1件,则共430元.
那么甲乙丙各买一需要多少元?
答
设甲乙丙的价钱各为x,y,z
则3x+7y+z=320 .....(1)
4x+10y+z=430 ......(2)
(2)-(1)得
x+3y=110
3x+9y=330
4x+10y+z=(3x+9y)+x+y+z=430
得x+y+z=430-330=100
答
3甲+7乙+1丙=320 ①
4甲+10乙+1丙=430 ②
两式相减 得 甲+3乙=110 ③
①式*4 12甲+28乙+4丙=1280
②式*3 12甲+30乙+3丙=1290
两式相减 丙-2乙=-10 ④
③④相加得 甲+乙+丙=100
答
3x+7y+z=320
4x+10y+z=430
z=320-3x-7y=430-4x-10y
=> x+3y=110
=> x=110-3y
x+y+z=110-3y+y+320-3(110-3y)-7y=100
甲乙丙各买一需要100元