∫(2π,0)|sinx|dx=

问题描述:

∫(2π,0)|sinx|dx=

∫(2π,0)|sinx|dx=∫(π,0)sinxdx + ∫(2π,π)(-sinx)dx=2+2=4
如果(2π,0)指的是0到2π的话就是4
如果(2π,0)指的是2π到0的话就是-4∫ 是上2π 下0那就是4咯