设m,k为整数,方程mx2-kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为( ) A.-8 B.8 C.12 D.13
问题描述:
设m,k为整数,方程mx2-kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为( )
A. -8
B. 8
C. 12
D. 13
答
设f(x)=mx2-kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有m>0f(1)=m−k+2...