已知圆(x+2)2+(y+1)2=4上有两点P,Q关于直线mx+ny+1=0对称,m>0,n>0,则1/m+2/n的最小值
问题描述:
已知圆(x+2)2+(y+1)2=4上有两点P,Q关于直线mx+ny+1=0对称,m>0,n>0,则1/m+2/n的最小值
答
根据题意知道mx+ny+1=0过圆心(-2,-1),所以-2m-n+1=0 2m+n=1
所以1/m+2/n=(1/m+2/n)(2m+n)=2+2+n/m+4m/n≥4+4=8
所以最小值为8