f(x)=根号3sinxcosx+cosx的平方+m
问题描述:
f(x)=根号3sinxcosx+cosx的平方+m
(1)求最小正跟周期及单调递增区间(2)若x属于【-π/6,π/3】,f(x)的最小值为2,求此时f(x)的最大值并指出取何值时f(x)去最大值
答
f(x)=√3sinxcosx+cos²x+m=√3/2sin2x+1/2(1+cos2x)+m=√3/2*sin2x+1/2*cos2x+m+1/2=sin(2x+π/6)+m+1/2(1)f(x)最小正周期T=2π/2=π由2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z得 kπ-π/3≤x≤kπ+π/6,k∈Z∴f(x)...