一个圆x2+y2=r2(r>0)能至少盖住函数f(x)=sinrx的一个最大值点和一个最小值点,则r的取值范围是

问题描述:

一个圆x2+y2=r2(r>0)能至少盖住函数f(x)=sinrx的一个最大值点和一个最小值点,则r的取值范围是

当x=2pai/r,sinrx有最大值,是点(2pai/r,1)
令r^2>1+(2pai/r)^2
解得是:r>=根号【根号(4+4pai^2)-1]/2】