1+ 1/1 +2+ 1/1+2+3 + 1/1+2+3+4 +``````+ 1/1+2+3+```+200
问题描述:
1+ 1/1 +2+ 1/1+2+3 + 1/1+2+3+4 +``````+ 1/1+2+3+```+200
答
1+2+……+n=n(n+1)/2
所以1/(1+2+……+n)=2/n(n+1)=2[1/n-1/(n+1)]
所以原式=2[(1-1/2)+(1/2-1/3)+……+(1/200+1/201)]
=2(1-1/201)
=400/201