已知P(x,y)是抛物线y2=-8x的准线与双曲线x28−y22=1的两条渐近线所围成的三角形平面区域内(含边界)的任意一点,则z=2x-y的最大值为_.
问题描述:
已知P(x,y)是抛物线y2=-8x的准线与双曲线
−x2 8
=1的两条渐近线所围成的三角形平面区域内(含边界)的任意一点,则z=2x-y的最大值为______. y2 2
答
由题意,y2=-8x的准线方程为:x=2双曲线x28−y22=1的两条渐近线方程为:y=±12x由题意,三角形平面区域的边界为x=2,y=±12x z=2x-y即y=2x-z,则z=2x-y的最大值为斜率为2的直线的纵截距的最小值由于直线y=-12x...