设s=(√1x2)+(√2x3)+(√3x4)+...+(√n(n+1)),求证n(n+1)/2
问题描述:
设s=(√1x2)+(√2x3)+(√3x4)+...+(√n(n+1)),求证n(n+1)/2
答
s=(√1x2)+(√2x3)+(√3x4)+...+(√n(n+1)),√1x2>1,√2x3>2,√3x4>3┄┄√n(n+1)>n,s=(√1x2)+(√2x3)+(√3x4)+...+(√n(n+1))>1+2+3┄┄+n=n(n+1)/2;(1+2)/2>√(1×2),(2+3)/2>√(2×3)┄┄(n+n+1)/2>√[...