1X2=1/3(1X2X3-0X1X2) 2X3=1/3(2X3X4-1X2X3) 发现1X2+2X3+3X4+、、、、、、+nX(n+1)=?

问题描述:

1X2=1/3(1X2X3-0X1X2) 2X3=1/3(2X3X4-1X2X3) 发现1X2+2X3+3X4+、、、、、、+nX(n+1)=?
谁知道

1X2+2X3+3X4+、、、、、、+nX(n+1)
=(1/3)(1*2*3-0*1*2)+(1/3)(2*3*4-1*2*3)+(1/3)(3*4*5-2*3*4)+.+(1/3)[n*(n+1)(n+3)-(n-1)*n*(n+1)]
=(1/3)[n(n+1)(n+2)-0]
=n(n+1)(n+2)/3