已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log13(a5+a7+a9)的值是(  ) A.-5 B.−15 C.5 D.15

问题描述:

已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log

1
3
(a5+a7+a9)的值是(  )
A. -5
B.
1
5

C. 5
D.
1
5

∵log3an+1=log3an+1
∴an+1=3an
∴数列{an}是以3为公比的等比数列,
∴a2+a4+a6=a2(1+q2+q4)=9
∴a5+a7+a9=a5(1+q2+q4)=a2q3(1+q2+q4)=9×33=35
log

1
3
(a5+a7+a9)=
log 35
1
3
=−5
故选A