求ln(1+x^2)*x的定积分

问题描述:

求ln(1+x^2)*x的定积分

原式=∫xln(1+x^2)dx
=(1/2)∫ln(1+x^2)d(1+x^2),
设1+x^2=t,
原式=(1/2)∫lnt dt,
用分部积分,
令u=lnt,v'=1,
u'=1/t,v=t,
原式=(1/2)t*lnt-(1/2)∫(1/t)*tdt
=(1/2)(1+x^2)ln(1+x^2)+(1+x^2)/2+C.