(3)已知x/x2+x+1=14,x2/x4+x2+1的值.

问题描述:

(3)已知x/x2+x+1=14,x2/x4+x2+1的值.

x/(x²+x+1)=1/(x+1+1/x)=14
x+1+1/x=1/14
x+1/x=1/14-1=-13/14
x²/(x^4+x²+1)
=1/(x²+1/x²+1)
=1/[(x+1/x)²-1]
=1/[(-13/14)²-1]
=1/(169/196-1)
=1/(-27/196)
=-196/27