如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE. (1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由; (2)若AD=4、AB=6,求直角边BC的长.
问题描述:
如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.
(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;
(2)若AD=4、AB=6,求直角边BC的长.
答
(1)连OD,OE,如图,
∵E是BC边上的中点,AB是半圆O的直径,
∴OE是△ABC的中位线,
∴OE∥AC,
∴∠1=∠3,∠2=∠A,而OD=OA,∠A=∠3,
∴∠1=∠2,
又∵OD=OB,OE为公共边,
∴△OED≌△OEB,
∴∠ODE=∠OBE=90°.
∴DE与半圆O相切.
(2)∵AB为直径
∴∠ADB=∠ABC=90°,
∴∠CAB=∠CAB,
∴△ABC∽△ADB.
∴
=AB AC
,AD AB
∵AD=4、AB=6,
∴AC=9,
∴在Rt△ABC中:BC=
=
AC2-AB2
=3
81-36
.
5