如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4. (1)求证:△ABE∽△ADB,并求AB的长; (2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?

问题描述:

如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.

(1)求证:△ABE∽△ADB,并求AB的长;
(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?

(1)证明:∵AB=AC,∴∠ABC=∠C.∵∠C=∠D,∴∠ABC=∠D.又∵∠BAE=∠DAB,∴△ABE∽△ADB,(3分)∴ABAD=AEAB,∴AB2=AD•AE=(AE+ED)•AE=(2+4)×2=12,∴AB=23.(5分)(2) 直线FA与⊙O相切.(6分)理...