.多项式f(x)=Cn,1(x-1)+Cn,2(x-1)^2+Cn,3(x-1)^3+.+Cn,n(x-1)^n的展开式中含x^6的系数是?
问题描述:
.多项式f(x)=Cn,1(x-1)+Cn,2(x-1)^2+Cn,3(x-1)^3+.+Cn,n(x-1)^n的展开式中含x^6的系数是?
答
由二项式定理,x^n = (1+(x-1))^n = 1+C(n,1)·(x-1)+C(n,2)·(x-2)²+...+C(n,n)·(x-1)^n.
因此f(x) = C(n,1)·(x-1)+C(n,2)·(x-2)²+...+C(n,n)·(x-1)^n = x^n-1.
当n ≠ 6时,f(x)展开式中含x^6的系数为0,当n = 6时为1.