一道数学代数题,麻烦大家来看看

问题描述:

一道数学代数题,麻烦大家来看看
设域F上多项式f(x)被x-1,x-2,x-3除后,余式分别为4,8,16,试求f(x)被(x-1)(x-2)(x-3)除后的余式.
其中F可以囊括整个复数域,不过这无关紧要

这样,由题目给的条件,假设:
f(x)=q(x-1)(x-2)(x-3)+ax^2+bx+c;
带入x=1,x=2,x=3,分别有:
f(1)=4;f(2)=8;f(3)=16;
记余式为r(x)=ax^2+bx+c;则:
r(1)=4;r(2)=8;r(3)=16;这样就简单了.
直接拉格朗日插值得:
r(x)=r(1)(x-2)(x-3)/(1-2)(1-3)+r(2)(x-1)(x-3)/(2-1)(2-3)+r(3)(x-1)(x-2)/(3-1)(3-2);
r(x)=2x^2-2x+4;
完了.