用正弦定理证明:如果在三角形ABC中,角A的外角平分线AD与边BC的延长线相交于点D,则BD比DC=AB比AC

问题描述:

用正弦定理证明:如果在三角形ABC中,角A的外角平分线AD与边BC的延长线相交于点D,则BD比DC=AB比AC

在△ABD中,根据正弦定理得
BD/AB=sin∠BAD/sin∠D
在△ACD中,根据正弦定理得
DC/AC=sin∠CAD/sin∠D
∵AD是外角平分线
∴∠BAC+2∠CAD=π
∴∠BAC+∠CAD=π-∠CAD
即∠BAD=π-∠CAD
∴sin∠BAD=sin(π-∠CAD)=sin∠CAD
∴sin∠BAD/sin∠D=sin∠CAD/sin∠D
即BD/AB=DC/AC
∴BD/DC=AB/AC