1+3+5···+2n-3+2n-1

问题描述:

1+3+5···+2n-3+2n-1

1+3+5…+2n-3+2n-1
原式 =(2×1-1)+(2×2-1)+(2×3-1).+[2(n-1)-1]+(2n-1)
=2×1-1+2×2-1+2×3-1.+2(n-1)-1+2n-1
=2×1+2×2+2×3.+2(n-1)+2n-1×n
=2×(1+2+3...+n-1+n)-n
=2×[(1+n)×n÷2]-n
=2×(n+n的二次方)÷2-n
=n+n的二次方-n
=n的二次方