求复合函数的导数y=(x+1)(x+2)(x+3)

问题描述:

求复合函数的导数y=(x+1)(x+2)(x+3)

用乘法公式:
y=(x+1)(x+2)(x+3)
y'=【(x+2)(x+3)*(x+1)'】+【(x+1)(x+3)*(x+2)'】+【(x+1)(x+2)*(x+3)'】
=【(x+2)(x+3)*1】+【(x+1)(x+3)*1】+【(x+1)(x+2)*1】
=【(x+2)(x+3)】+【(x+1)(x+3)】+【(x+1)(x+2)】
=【x²+5x+6】+【x²+4x+3】+【x²+3x+2】
=3x²+12x+11
逐个拆项也行:
y=(x+1)(x+2)(x+3)
=【(x+1)(x+2)】(x+3)
=(x²+3x+2)(x+3)
=x(x²+3x+2)+3(x²+3x+2)
=x³+3x²+2x+3x²+9x+6
=x³+6x²+11x+6
y'=3*x²+6*2*x+11*1+0
=3x²+12x+11

不是复合函数吧
化简得y=x^3 +6x^2+11x+6
y'=3x^2+12x+11

分别求导:
y'=(x+2)(x+3)+(x+1)(x+2)+(x+1)(x+3)
=y'=3x^2+12x+11

化成y=x^3+6x^2+11x+6 进而求导为y'=3x^2+12x+11