已知sina,cosa是关于x的一元二次方程2x∧2+(√2+1)x+m=0的两个根,试求:〔sin(a+9π/2)/1-tan∧2(3π/2-a)〕-〔sin(a-11π)/1-cot∧2(5π/2+a)〕的值
问题描述:
已知sina,cosa是关于x的一元二次方程2x∧2+(√2+1)x+m=0的两个根,试求:〔sin(a+9π/2)/1-tan∧2(3π/2-a)〕-〔sin(a-11π)/1-cot∧2(5π/2+a)〕的值
答
正在做啊〔sin(a+9π/2)/1-tan∧2(3π/2-a)〕-〔sin(a-11π)/1-cot∧2(5π/2+a)〕=[cosa/(1-cot^2a)]-[-sina/(1-tan^2a)]=cosa/(1-cos^2a/sin^2a)+sina/(1-sin^2a/cos^2a)=sin^2acosa/(sin^2a-cos^2a)+sinacos^2a/(cos^2a-sin^2a)=sinacosa(sina-cosa)/(sin^2a-cos^2a)=sinacosa/(sina+cosa)=(m/2)/(-(根号2+1)/2)=m/(根号2+1)=m(根号2-1)=(m/2)/(-(根号2+1)/2)=-m/(根号2+1)=-m(根号2-1)