求dy/dx,y=∫sin(t^2)dt由1/x积到根号x
问题描述:
求dy/dx,y=∫sin(t^2)dt由1/x积到根号x
答
d/dx ∫(1/x→√x) sin(t²) dt
= d(√x)/dx · sin(√x²) - d(1/x)/dx · sin(1/x²)
= 1/(2√x) · sin|x| - (- 1/x²) · sin(1/x²)
= (sinx)/(2√x) + [sin(1/x²)]/x²