求有方程y=x+ln y所确定的函数y=y(x)的微分dy

问题描述:

求有方程y=x+ln y所确定的函数y=y(x)的微分dy

两边同时微分
d(y)=d(x+lny)
dy=dx+d(lny)
dy=dx+1/y*dy
所以dy(1-1/y)=dx
即dy=y/(y-1)*dx

F(x,y)=x+lny-y=0
dF(x,y)=0=(∂F(x,y)dx/∂x)+(∂F(x,y)dy/∂y)
dy/dx=-(∂F(x,y)/∂x)/(∂F(x,y)/∂y)
=-1/(1/y-1)
=y/(y-1)
dy=ydx/(y-1)