已知二次函数y=f(x)的图像时开口向上的抛物线,f(-5)、f(-1)、f(4)、f(7)这四个函数值中有且只有一个值不大于0,画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还能写出其他的解析式吗?

问题描述:

已知二次函数y=f(x)的图像时开口向上的抛物线,f(-5)、f(-1)、f(4)、f(7)这四个函数值中有且只有一个值不大于0,画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还能写出其他的解析式吗?
好的话在追加50分!

设函数为Y=A(x-B)^2+C
开口向上那么
A>0
f(-5)、f(-1)、f(4)、f(7)这四个函数值中有且只有一个值不大于0
意思是他们中的一个小于等于0的话 其他3个数都大于0
如果是f(-1)=0
那么可以得出这样的式子
因为A为>0的任意数,B=-1,C=0.
那么Y=2(X+1)^2.
如果F(4)=0
那么B=4 C=0
Y=2(X-4)^2.