可导函数对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy ,f'(0)=0求f'(3)

问题描述:

可导函数对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy ,f'(0)=0求f'(3)

f(0+0)=f(0)+f(0)+2*0*0,f(0)=0
f(3+h)=f(3)+f(h)+2*3*h,f(3+h)-f(3)=f(h)+6h,
按极限定义,
f'(3)=h-0的极限[f(3+h)-f(3)]/h
=h-0的极限[f(h)+6h]/h
=h-0的极限f(h)/h +6
=f'(0)+6=6