弦长公式

问题描述:

弦长公式

弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]   其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号   证明方法如下:  假设直线为:Y=kx+b   圆的方程为:(x-a)^2+(y-u)^2=r^2   假设相交弦为AB,点A为(x1.y1)点B为(X2.Y2)   则有AB=√(x1-x2)^2+(y1-y2)^   把y1=kx1+b.  y2=kx2+b分别带入,  则有:  AB=√(x1-x2)^2+(kx1-kx2)^2   =√(x1-x2)^2+k^2(x1-x2)^2   =√1+k^2*│x1-x2│   证明ABy1-y2│√[(1/k^2)+1]   的方法也是一样的   证明方法二   d=√(x1-x2}^2+(y1-y2)^2   这是两点间距离公式   因为直线   y=kx+b   所以y1-y2=kx1+b-(kx2+b)=k(x1-x2)   将其带入   d=√(x1-x2)^2+(y1-y2)^2   得到   d=√(x1-x2)^2+[k(x1-x2)]^2   =√(1+k^2)(x1-x2)^2   =√(1+k^2)*√(x1-x2)^2   =√(1+k^2)*√(x1+x2)^2-4x1x2