设抛物线为y=x2-kx+k-1,根据下列各条件,求k的值. (1)抛物线的顶点在x轴上; (2)抛物线的顶点在y轴上; (3)抛物线的顶点(-1,-2); (4)抛物线经过原点; (5)当x=1时,y有最小
问题描述:
设抛物线为y=x2-kx+k-1,根据下列各条件,求k的值.
(1)抛物线的顶点在x轴上;
(2)抛物线的顶点在y轴上;
(3)抛物线的顶点(-1,-2);
(4)抛物线经过原点;
(5)当x=1时,y有最小值;
(6)y的最小值为-1.
答
(1)抛物线的顶点在x轴上,即
=0,∴k=2;4(k−1)−k2
4
(2)抛物线的顶点在y轴上,即x=-
=0,∴k=0;−k 2
(3)抛物线的顶点(-1,-2),即x=-
=-1,-−k 2
=2,∴k=1;4(k−1)−k2
4
(4)抛物线经过原点,即k-1=0,∴k=1;
(5)当x=1时,y有最小值,即-
=1,k=2;−k 2
(6)y的最小值为-1,y=(x−
)2+k-1-k 2
,即k-1-k2 4
=-1,解得:k=0或k=4.k2 4