若x大于0且x≠1,则1+x^7与x^3+x^4的大小关系

问题描述:

若x大于0且x≠1,则1+x^7与x^3+x^4的大小关系
如题

1+x^7-(x^3+x^4)
=1-x^3+x^7-x^4
=(1-x^3)-x^4(1-x^3)
=(1-x^4)(1-x^3)
=(x^4-1)(x^3-1)
=(x+1)(x-1)(x^2+1)(x-1)(x^2+x+1)
=(x^2+1)(x-1)^2(x+1)(x^2+x+1)
x^2+1>0
x≠1,(x-1)^2>0
x^2+x+1=(x+1/2)^2+3/4>0
x>0,x+1>0
所以(x^2+1)(x-1)^2(x+1)(x^2+x+1)>0
所以1+x^7-(x^3+x^4)>0
1+x^7>x^3+x^4