x^3+2x^2+3x+4=0,三根为x1,x2,x3,求x1^3+x2^3+x3^3 =?

问题描述:

x^3+2x^2+3x+4=0,三根为x1,x2,x3,求x1^3+x2^3+x3^3 =?

因三根为x1,x2,x3故原方程还可以写成:(x-x1)*(x-x2)*(x-x3)=0展开得:x^3-(x1+x2+x3)x^2+(x1x2+x1x3+x2x3)x-x1x2x3=0对比原方程,有:-(x1+x2+x3)=2x1x2+x1x3+x2x3=3-x1x2x3=4因三根为x1,x2,x3故他们均满足原方程...