已知f(x)=x-a/x(a>0),g(x)=2lnx+bx,且直线y=2x-2与曲线y=g(x)相切. (Ⅰ)求b的值; (Ⅱ)若对[1,+∞)内的一切实x,不等式f(x)≥g(x)恒成立,求实数a的取值范围.

问题描述:

已知f(x)=x-

a
x
(a>0),g(x)=2lnx+bx,且直线y=2x-2与曲线y=g(x)相切.
(Ⅰ)求b的值;
(Ⅱ)若对[1,+∞)内的一切实x,不等式f(x)≥g(x)恒成立,求实数a的取值范围.

(Ⅰ)设点(x0,y0)为直线y=2x-2与曲线y=g(x)的切点,
则有2lnx0+bx0=2x0-2      (*)
g(x)=

2
x
+b,
2
x0
+b=2
   (**)
联立(*)(**)两式,解得b=0;
(Ⅱ)∵b=0,
∴g(x)=2lnx.
由f(x)≥g(x)整理,得
a
x
≤x−2lnx

∵x≥1,
∴要使不等式f(x)≥g(x)恒成立,必须a≤x2-2xlnx恒成立.
设h(x)=x2-2xlnx,h(x)=2x−2(lnx+x•
1
x
)=2x−2lnx−2

再设m(x)=2x-2lnx-2,
∴当x≥1时,m′(x)>0,则h′(x)是增函数,
∴h′(x)≥h′(1)=0,h(x)是增函数,h(x)≥h(1)=1,
∴a≤1.