已知a=(根号3,-1)b=(1/2,根号3/2)且存在实数K和T,使得x=a+(t²-3)b,y=-ka+tb,(2)已知a=(根号3,-1)b=(1/2,根号3/2)且存在实数K和T,使得x=a+(t²-3)b,y=-ka+tb,x⊥y,试求t²+k/t的最小值

问题描述:

已知a=(根号3,-1)b=(1/2,根号3/2)且存在实数K和T,使得x=a+(t²-3)b,y=-ka+tb,
(2)已知a=(根号3,-1)b=(1/2,根号3/2)且存在实数K和T,使得x=a+(t²-3)b,y=-ka+tb,x⊥y,试求t²+k/t的最小值

如图