把下列参数方程转化成普通方程,并说明它们个表示什么曲线

问题描述:

把下列参数方程转化成普通方程,并说明它们个表示什么曲线
x=3-2t y=-1-4t t为参数,
x=t+1/t y=t-1/t t为参数

x=3-2t y=-1-4t t为参数,
x=3-2t → 2t=3-x,→4t=6-2x
代入 y=-1-4t :y=-1-4(6-2x)→
y=-25+8x→y=8x-25表示直线
x=t+1/t y=t-1/t t为参数
x^2=t^2+(1/t^2)+2
y^2=t^2+(1/t^2)-2
x^2-y^2=4表示等轴双曲线