求和:1+1/1+2+1/1+2+3+…+1/1+2+3+…+n=_.

问题描述:

求和:1+

1
1+2
+
1
1+2+3
+…+
1
1+2+3+…+n
=______.

an

1
1+2+3+…+n
2
n(n+1)

∴Sn=a1+a2+a3+…+an
=2(
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n×(n+1)

=2×(1−
1
2
+
1
2
1
3
+
1
3
1
4
+…+
1
n
1
n+1
)

=2(1-
1
n+1
)=
2n
n+1

故答案:
2n
n+1