求和:1+1/1+2+1/1+2+3+…+1/1+2+3+…+n=_.
问题描述:
求和:1+
+1 1+2
+…+1 1+2+3
=______. 1 1+2+3+…+n
答
an=
=1 1+2+3+…+n
,2 n(n+1)
∴Sn=a1+a2+a3+…+an
=2(
+1 1×2
+1 2×3
+…+1 3×4
)1 n×(n+1)
=2×(1−
+1 2
−1 2
+1 3
−1 3
+…+1 4
−1 n
)1 n+1
=2(1-
)=1 n+1
.2n n+1
故答案:
.2n n+1