已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2(1)求m的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
问题描述:
已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
答
(1)将原方程整理为x2+2(m-1)x+m2=0;∵原方程有两个实数根,∴△=[2(m-1)]2-4m2=-8m+4≥0,得m≤12;(2)∵x1,x2为一元二次方程x2=2(1-m)x-m2,即x2+2(m-1)x+m2=0的两根,∴y=x1+x2=-2m+2,且m≤12;因...
答案解析:(1)若一元二次方程有两不等根,则根的判别式△=b2-4ac≥0,建立关于m的不等式,可求出m的取值范围;
(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值范围,即可求出y的最小值及对应的m值.
考试点:根与系数的关系;根的判别式;一次函数的性质.
知识点:此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答(2)题的关键.