已知 关于x的一元二次方程x2-(2k+1)x+4k-3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=31,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.

问题描述:

已知 关于x的一元二次方程x2-(2k+1)x+4k-3=0.
(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;
(2)当Rt△ABC的斜边长a=

31
,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.

(1)关于x的一元二次方程x2-(2k+1)x+4k-3=0,△=(2k+1)2-4(4k-3)=4k2-12k+13=4(k−32)2+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边...
答案解析:(1)根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.
考试点:根与系数的关系;根的判别式;勾股定理.
知识点:本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明(1),再根据勾股定理和根与系数的关系列出方程组进行解答.