已知数列{An}的前n项和为Sn,又有数列{Bn},他们满足关系b1=a1,对于n包含于N*有an+Sn=n,b(n+1)=a(n+1)-an,求证:{Bn}是等比数列,并求其通项公式!
问题描述:
已知数列{An}的前n项和为Sn,又有数列{Bn},他们满足关系b1=a1,对于n包含于N*有an+Sn=n,b(n+1)=a(n+1)-an,求证:{Bn}是等比数列,并求其通项公式!
答
SN=N-AN 1
Sn-1=(n-1)-AN-1 2
1式-2式得An= 自己算
求证等比,根据定义
bn=an-a(n-1) 3
bn+1=an+1-an 4
4/3,再用求得的AN公式转换带入,合并简化,直至取得公比常数
注意验证当n=1时是否符合