设G(x+z*y^(-1),y+z*x^(-1))=0确定了z=f(x,y)证明:x*z对x的偏导数+y*z对y的偏导数=z-xy
问题描述:
设G(x+z*y^(-1),y+z*x^(-1))=0确定了z=f(x,y)证明:x*z对x的偏导数+y*z对y的偏导数=z-xy
答
G[x + z*y^(- 1),y + z*x^(- 1)] = 0证明x*∂z/∂x + y*∂z/∂y = z - xy?Gz = (1/y)G1 + (1/x)G2 = LGx = G1 - (z/x²)G2Gy = (- z/y²)G1 + G2∂z/∂x = - Gx/Gz = [- G1 +...