求lim(x->+无穷)(2/派arctan x)^x

问题描述:

求lim(x->+无穷)(2/派arctan x)^x
正无穷大,圆周率派 希望能看得懂,麻烦给个具体解题过程,

原式=lim[1+(2arctanx-π)/π]^[π/(2arctanx-π)*(2arctanx-π)/π*x]=e^lim(2arctanx-π)/(π/x)=e^lim[2/(1+x^2)]/(-1/x^2)=e^(-2)limx^2/(1+x^2)=e^(-2)lim[1-1/(1+x^2)]=e^(-2)不好意思我没写清楚 求lim(x-> 无穷)(2/派*arctan x)^x应该是这样的û�?��������ô���但书上答案是e^(-2/派)ѽ��������ԭʽ=lim[1+(2arctanx-��)/��]^[��/(2arctanx-��)*(2arctanx-��)/��*x]=e^lim(2arctanx-��)/(��/x)=e^lim[2/(1+x^2)]/(-��/x^2),�ղ���һ������=e^(-2/��)limx^2/(1+x^2)=e^(-2/��)lim[1-1/(1+x^2)]=e^(-2/��)