关于三角函数的等式证明

问题描述:

关于三角函数的等式证明
求证:三角形ABC中,
tan(A/2)·tan(B/2)+tan(B/2)·tan(C/2)+tan(A/2)·tan(C/2)=1

因为在△ABC中,A+B+C=180°
所以:(A+B+C)/2=90°
所以,(A/2)=90°-(B+C)/2
那么:
tan(A/2)=tan[90°-(B+C)/2]=cot[(B+C)/2]=1/tan[(B+C)/2]
=1/{[tan(B/2)+tan(C/2)]/[1-tan(B/2)tan(C/2)]}
=[1-tan(B/2)tan(C/2)]/[tan(B/2)+tan(C/2)]……………(1)
上述等式左边
tan(A/2)*tan( B/2)+tan(B/2)tan(C/2)+tan(C/2)*tan(A/2)
=tan(A/2)*[tan(B/2)+tan(C/2)]+tan(B/2)tan(C/2)
将(1)式代入上式,则:
=[1-tan(B/2)tan(C/2)]+tan(B/2)tan(C/2)
=1
=右边
所以,命题成立