在P是直角梯形ABCD所在平面外一点,PA⊥平面ABCD,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PD与底面成30°角,BE⊥PD于E,求直线BE与平面PAD所成的角.
问题描述:
在P是直角梯形ABCD所在平面外一点,PA⊥平面ABCD,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PD与底面成30°角,BE⊥PD于E,求直线BE与平面PAD所成的角.
答
∵PA⊥平面ABCD,∴∠PDA为PD与底面所成的角,PA⊥AB.∵∠BAD=90°,∴AB⊥AD.再由PA∩AD=A,可得AB⊥平面PAD,AE是BE在平面PAD内的射影,∴∠BEA为BE与平面PAD所成的角.∵BE⊥PD,∴AE⊥PD,在Rt△PAD中,∠PDA=...