若a,b,c∈R+,则证明(bc/a)+(ca/b)+(ab/c)≥a+b+c

问题描述:

若a,b,c∈R+,则证明(bc/a)+(ca/b)+(ab/c)≥a+b+c

因为(bc/a)+(ca/b)>=2c
(ab/c)+(bc/a)>=2b
(ca/b)+(ab/c)≥2a
所以:(bc/a)+(ca/b)+(ab/c)≥a+b+c