用数学归纳法证明an+1+(a+1)2n-1能被a2+a+1整除(n∈N*).
问题描述:
用数学归纳法证明an+1+(a+1)2n-1能被a2+a+1整除(n∈N*).
答
(1)当n=1时,a2+(a+1)=a2+a+1可被a2+a+1整除(2)假设n=k(k∈N*)时,ak+1+(a+1)2k-1能被a2+a+1整除,则当n=k+1时,ak+2+(a+1)2k+1=a•ak+1+(a+1)2(a+1)2k-1=a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-...