已知sin(β+π/6)=3/5 β在(0.π/2) 求β
问题描述:
已知sin(β+π/6)=3/5 β在(0.π/2) 求β
答
因为sin(β+π/6)=3/5
所以(β+π/6)=arcsin3/5
或(β+π/6)=π-arcsin3/5
所以β=-π/6+arcsin3/5或β=5π/6-arcsin3/5
答
sin(β+π╱6)=3╱5sinβcosπ╱6+sinπ╱6cosβ=3╱5······①
①得√3╱2sinβ+1╱2cosβ=3╱5··②
又因为
sin²β+cos²β=1·····③
由②③可得sinβ与cosβ值再用反三角表示就求出来了β
答
【如果你对三角函数值够熟悉的话、、、
sinx=0.6,则x约=37°或者143°】
因为β在(0,π/2)上,则β+π/6在(π/6,2π/3)
143显然是大于2π/3的.所以β+π/6=arcsin0.6(就是那个37°)
β=arcsin0.6-30°
答
sin(α+β)=sinαcosβ+cosαsinβ按照这个公式在结合β的取值范围可以计算出β的值;其实应该可以这样0π/6若sin(β+π/6)=3/5(sin37°或sin143°=0.6)
β+π/6=π/5---β=π/30