如图,已知:AC=EC,∠ACE=90°,B为AE上一点,ED⊥CB于D,AF⊥CB交CB的延长线于F,求证:DF=CF-AF.
问题描述:
如图,已知:AC=EC,∠ACE=90°,B为AE上一点,ED⊥CB于D,AF⊥CB交CB的延长线于F,求证:DF=CF-AF.
答
证明:∵AF⊥CB,∠ACE=90°,
∴∠CAF+∠ACF=∠ACF+∠ECD,
∴∠CAF=∠ECD;
又∵AC=EC,且∠AFC=∠EDC=90°(已知),
∴△AFC≌△CDE(AAS),
∴AF=CD;
∵DF=CF-CD,
∴DF=CF-AF.