已知:如图,在△ABC中,分别延长中线BE、CD至N、M,使EN=EB,DM=DC,求证:点M、A、N三点在同一条直线上.

问题描述:

已知:如图,在△ABC中,分别延长中线BE、CD至N、M,使EN=EB,DM=DC,求证:点M、A、N三点在同一条直线上.

证明:连接AM、AN,
∵DM=DC,∠ADM=∠BDC,AD=DB,
∴△AMD≌△BCD.
∴∠MAD=∠DBC.
同理可证:∠NAE=∠ECB,
∵∠BAC+∠DBC+∠ECB=180°,
∴∠MAD+∠BAC+∠NAE=180.
∴点M、A、N三点在同一条直线上.