一道等差数列的求和问题.
问题描述:
一道等差数列的求和问题.
某小孩玩投放石子游戏,从A出发走1米放1枚石子,第二次走4米又放3枚石子,第三次走7米再放5牧石子,再走10米放7枚石子,…照此规律最后走到B处放下35枚石子.问从A到B路程有多远?
1,3,5,7,…35.
这是一个等差数列,其中首项a1=1,公差d=2,末项an=35,那么
n=(an-a1)÷d+1=(35-1)÷2+1=18
.
我不太清楚的是这个式子,还有为什么要加1呢?
答
这个题目里出现了两个等差数列,一个是小孩每次走的距离1、4、7、10……,另一个是小孩每次放的石头数量1、3、5、7……35.这个题第一步显然是求数列有多少项,以石子数列来计算,n-1表示自第一次之后又放了多少次石头,也...